Sequence analysis
Analyses of sequences
Requirements
Before diving into this topic, we recommend you to have a look at:
Material
You can view the tutorial materials in different languages by clicking the dropdown icon next to the slides (slides) and tutorial (tutorial) buttons below.The Basics
These tutorials cover basic operations common to many sequence-bases analyses
Lesson | Slides | Hands-on | Recordings | Input dataset | Workflows |
---|---|---|---|---|---|
Mapping
|
|||||
Quality Control
|
Other
Assorted Tutorials
Frequently Asked Questions
Common questions regarding this topic have been collected on a dedicated FAQ page . Common questions related to specific tutorials can be accessed from the tutorials themselves.
Follow topic updates rss-feed with our RSS Feed
Community Resources
Community Home Maintainer HomeEditorial Board
This material is reviewed by our Editorial Board:
Yvan Le Bras Bérénice Batut Joachim WolffContributors
This material was contributed to by:
Saskia Hiltemann Anup Kumar Frederick Tan Candace Savonen Katherine Cox Maria Doyle Eric Tvedte Helena Rasche Teresa Müller Cameron Hyde Björn Grüning Anne Fouilloux Natalie Kucher Simon Bray Mateo Boudet Wolfgang Maier Anika Erxleben Deepti Varshney Alexandre Cormier Swathi Nataraj Anthony Bretaudeau Erwan Corre Clea Siguret Laura Leroi Coline Royaux William Durand Cristóbal Gallardo Stéphanie Robin Joachim Wolff Ava Hoffman Bérénice Batut Matthias Bernt Nicola Soranzo Robert Meller Elizabeth HumphriesFunding
These individuals or organisations provided funding support for the development of this resource
ABRomics
NIH
DataPLANT
NHGRI ANVIL
NHGRI GDS Community Network
MAdLand
Gallantries
This project (2020-1-NL01-KA203-064717) is funded with the support of the Erasmus+ programme of the European Union. Their funding has supported a large number of tutorials within the GTN across a wide array of topics.
References
-
SciLifeLab: QCFAIL
Articles about common next-generation sequencing problems -
Marco-Antonio Mendoza-Parra et al: A quality control system for profiles obtained by ChIP sequencing
Presents an approach that associates global and local QC indicators to ChIP-seq data sets as well as to a variety of enrichment-based studies by NGS. -
Ana Conesa et al: A survey of best practices for RNA-seq data analysis
Highlights the challenges associated with each step of RNA-seq data analysis. -
Yuval Benjamini et al: Summarizing and correcting the GC content bias in high-throughput sequencing
Summarizes the many possible sourced of GC bias for deeply sequenced samples. -
David Sims et al: Sequencing depth and coverage: key considerations in genomic analyses
Discuss the issue of sequencing depth in the design of next-generation sequencing experiments. -
Frontiers in Genetics: Quality assessment and control of high-throughput sequencing data
Collection of papers on quality controls for various NGS applications -
Frazer Meacham et al: Identification and correction of systematic error in high-throughput sequence data
Reviews and proposes correction for systematic base pair errors in deep sequencing -
Guillaume Devailly et al: Heat seq: an interactive web tool for high-throughput sequencing experiment comparison with public data
Presents a web-tool that allows genome scale comparison of high throughput experiments -
Amores, A., et al. 2011: Genome evolution and meiotic maps by massively parallel DNA sequencing
-
Catchen, J. M. et al. 2011: Stacks: building and genotyping loci de novo from short-read sequences
-
Davey, J. W., et al. 2011: Genome-wide genetic marker discovery and genotyping using next-generation sequencing
-
Etter, P. D., et al. 2011: SNP Discovery and Genotyping for Evolutionary Genetics using RAD sequencing
-
Ekblom, R., and J. Galindo. 2010: Applications of next generation sequencing in molecular ecology of non-model organisms
-
Hohenlohe, P. A. et al. 2010: Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags
-
Gompert, Z., and C. A. Buerkle. 2011a: A hierarchical Bayesian model for next-generation population genomics
-
Gompert, Z., and C. A. Buerkle. 2011b: Bayesian estimation of genomic clines
-
Lynch, M. 2009: Estimation of allele frequencies from high-coverage genome-sequencing projects
-
Nielsen, R., et al. 2005: Genomic scans for selective sweeps using SNP data
-
Hohenlohe, P. A., et al. 2010: Using population genomics to detect selection in natural populations: Key concepts and methodological considerations
-
Stapley, J., et al. 2010: Adaptation genomics: the next generation
-
Altshuler, D., et al. 2000: An SNP map of the human genome generated by reduced representation shotgun sequencing
-
Baxter, S. W., et al. 2011: Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism
-
Chutimanitsakun, Y., et al. 2011: Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley
-
Gore, M. A., et al. 2009: A first-generation haplotype map of maize
-
Baird, N. A., et al. 2008: Rapid SNP discovery and genetic mapping using sequenced RAD markers
-
Emerson, K. J., et al. 2010: Resolving postglacial phylogeography using high-throughput sequencing
-
Etter, P. D., et al. 2011: Local De Novo Assembly of RAD Paired-End Contigs Using Short Sequencing Reads
-
Hohenlohe, P. A., et al. 2011: Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout
-
Miller, M. R., et al. 2007: Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers
-
Willing, E. M., et al. 2011: Paired-end RAD-seq for de novo assembly and marker design without available reference
-
Andolfatto, P., et al. 2011: Multiplexed shotgun genotyping for rapid and efficient genetic mapping
-
Elshire, R. J., et al. 2011: A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species
-
Rigola, D., et al. 2009: High-Throughput Detection of Induced Mutations and Natural Variation Using KeyPoint™ Technology
-
van Orsouw, N. J., et al. 2007: Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes
-
van Tassell, C. P., et al. 2008: SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries
-
Luikart, G.,et al. 2003: The power and promise of population genomics: from genotyping to genome typing
-
Nielsen, R., et al. 2011: Genotype and SNP calling from next-generation sequencing data