Single Cell

Training material and practicals for all kinds of single cell analysis (particularly scRNA-seq!).

Pre-requisites: If you’ve never used Galaxy before, first try the:

cta.icon   Introduction to Galaxy

The Single Cell & Galaxy Communities are also available via Slack

cta.icon   GTN Slack Workspace

Come chat Single Cell with us on Matrix

cta.icon   Community Matrix Chat

What else do you want to see? Let us know!

cta.icon   Tool/Tutorial Requests

Not sure where to start?

Try a Single Cell Learning Pathway! For Beginners For Intermediate Users For Coding Enthusiasts

Material

Jump to a section!

You can view the tutorial materials in different languages by clicking the dropdown icon next to the slides (slides) and tutorial (tutorial) buttons below.

Introduction

Start here if you are new to single cell analysis and want to learn the concepts.

Lesson Slides Hands-on Recordings Input dataset Workflows
An introduction to scRNA-seq data analysis
Understanding Barcodes
Plates, Batches, and Barcodes
Single-cell Formats and Resources
Trajectory analysis
Automated Cell Annotation

Your first analysis

Start here if you are new to single cell analysis in Galaxy and want to try analysing data.

Lesson Slides Hands-on Recordings Input dataset Workflows
Pre-processing of 10X Single-Cell RNA Datasets
10x
Clustering 3K PBMCs with Scanpy
10x

Case study

These tutorials take you from raw scRNA sequencing reads to inferred trajectories to replicate a published analysis. The data is messy. The decisions are tough. The interpretation is meaningful. Come here to advance your single cell skills! Note that you get two options for inferring trajectories.

Lesson Slides Hands-on Recordings Input dataset Workflows
Generating a single cell matrix using Alevin
Combining single cell datasets after pre-processing
Filter, plot and explore single-cell RNA-seq data with Scanpy
Filter, plot, and explore single cell RNA-seq data with Seurat
Inferring single cell trajectories with Scanpy
Inferring single cell trajectories with Monocle3

Case study: Reloaded

These tutorials let you follow the same case study analysis of real, messy data but in a programming environment, hosted on Galaxy. So if you want more flexibility, but the same guided steps as the Case Study, you can skip the Case Study and start here instead. Alternatively, try these after completing the Case Study for an easier jump to a coding environment.

Lesson Slides Hands-on Recordings Input dataset Workflows
Generating a single cell matrix using Alevin and combining datasets (bash + R)
Filter, plot and explore single-cell RNA-seq data with Scanpy (Python)
Filter, plot, and explore single cell RNA-seq data with Seurat (R)
Inferring single cell trajectories with Scanpy (Python)
Inferring single cell trajectories with Monocle3 (R)

End-to-end scRNA-seq Analyses

These tutorials use different methods to analyse scRNA-seq samples

Lesson Slides Hands-on Recordings Input dataset Workflows
Pre-processing of Single-Cell RNA Data
Downstream Single-cell RNA analysis with RaceID
Analysis of plant scRNA-Seq Data with Scanpy

Deconvolution

These tutorials infer cell compositions from bulk RNA-seq data using a scRNA-seq reference

Lesson Slides Hands-on Recordings Input dataset Workflows
Bulk RNA Deconvolution with MuSiC
Comparing inferred cell compositions using MuSiC deconvolution

Multiomic Analyses

This section lets you build on mere scRNA analyses into a multiomic future!

Lesson Slides Hands-on Recordings Input dataset Workflows
Pre-processing of 10X Single-Cell ATAC-seq Datasets
Single-cell ATAC-seq standard processing with SnapATAC2

Tips, tricks & other hints

These tutorials cover helpful skills for scRNA-seq analysis

Lesson Slides Hands-on Recordings Input dataset Workflows
Single-cell quality control with scater
Removing the effects of the cell cycle
10x
Scanpy Parameter Iterator

Changing data formats & preparing objects

These tutorials cover a range of needs for importing data from different sources, to changing data into different formats to move from one analysis to the other.

Lesson Slides Hands-on Recordings Input dataset Workflows
Converting between common single cell data formats
Importing files from public atlases
Converting NCBI Data to the AnnData Format
Matrix Exchange Format to ESet | Creating a single-cell RNA-seq reference dataset for deconvolution
Bulk matrix to ESet | Creating the bulk RNA-seq dataset for deconvolution

Exploratory Analyses

What do you do with your list of genes? Come here to explore your results more!

Lesson Slides Hands-on Recordings Input dataset Workflows
GO Enrichment Analysis on Single-Cell RNA-Seq Data

When something goes wrong in Galaxy, there are a number of things you can do to find out what it was. Error messages can help you figure out whether it was a problem with one of the settings of the tool, or with the input data, or maybe there is a bug in the tool itself and the problem should be reported. Below are the steps you can follow to troubleshoot your Galaxy errors.

  1. Expand the red history dataset by clicking on it.
    • Sometimes you can already see an error message here
  2. View the error message by clicking on the bug icon galaxy-bug

  3. Check the logs. Output (stdout) and error logs (stderr) of the tool are available:
    • Expand the history item
    • Click on the details icon
    • Scroll down to the Job Information section to view the 2 logs:
      • Tool Standard Output
      • Tool Standard Error
    • For more information about specific tool errors, please see the Troubleshooting section
  4. Submit a bug report! If you are still unsure what the problem is.
    • Click on the bug icon galaxy-bug
    • Write down any information you think might help solve the problem
      • See this FAQ on how to write good bug reports
    • Click galaxy-bug Report button
  5. Ask for help!

Want to explore analysis beyond our tutorials?

Public workflows

News and Events

Want to contribute?

If you want to help us behind the scenes, from testing workflows and tutorials to building tools, join our Galaxy Single-cell & sPatial Omics Community of Practice!

Frequently Asked Questions

Common questions regarding this topic have been collected on a dedicated FAQ page . Common questions related to specific tutorials can be accessed from the tutorials themselves.

Follow topic updates rss-feed with our RSS Feed

Editorial Board

This material is reviewed by our Editorial Board:

orcid logoWendi Bacon avatar Wendi Bacon Mehmet Tekman avatar Mehmet Tekman orcid logoPavankumar Videm avatar Pavankumar Videm orcid logoMorgan Howells avatar Morgan Howells orcid logoMarisa Loach avatar Marisa Loach orcid logoFlorian Heyl avatar Florian Heyl

Contributors

This material was contributed to by:

orcid logoNicola Soranzo avatar Nicola Soranzo orcid logoWolfgang Maier avatar Wolfgang Maier orcid logoCristóbal Gallardo avatar Cristóbal Gallardo orcid logoAnika Erxleben avatar Anika Erxleben orcid logoAnthony Bretaudeau avatar Anthony Bretaudeau Simon Bray avatar Simon Bray orcid logoMartin Čech avatar Martin Čech David López avatar David López Teresa Müller avatar Teresa Müller orcid logoBeatriz Serrano-Solano avatar Beatriz Serrano-Solano orcid logoTimon Schlegel avatar Timon Schlegel orcid logoAlex Ostrovsky avatar Alex Ostrovsky orcid logoBjörn Grüning avatar Björn Grüning orcid logoDaniel Blankenberg avatar Daniel Blankenberg orcid logoMarisa Loach avatar Marisa Loach orcid logoHelena Rasche avatar Helena Rasche orcid logoSaskia Hiltemann avatar Saskia Hiltemann orcid logoJulia Jakiela avatar Julia Jakiela orcid logoPavankumar Videm avatar Pavankumar Videm Camila Goclowski avatar Camila Goclowski orcid logoHans-Rudolf Hotz avatar Hans-Rudolf Hotz orcid logoGraeme Tyson avatar Graeme Tyson Menna Gamal avatar Menna Gamal Matthias Bernt avatar Matthias Bernt orcid logoStéphanie Robin avatar Stéphanie Robin orcid logoMorgan Howells avatar Morgan Howells orcid logoGraham Etherington avatar Graham Etherington Mehmet Tekman avatar Mehmet Tekman orcid logoWendi Bacon avatar Wendi Bacon Pablo Moreno avatar Pablo Moreno orcid logoKatarzyna Kamieniecka avatar Katarzyna Kamieniecka Jonathan Manning avatar Jonathan Manning orcid logoDiana Chiang Jurado avatar Diana Chiang Jurado orcid logoBérénice Batut avatar Bérénice Batut

Funding

These individuals or organisations provided funding support for the development of this resource

References