Cut: columns from a table
Cut1
Metadata
Links
EDAM Operations
Observed Tool Versions
Within GTN tutorials
0.0.0
- UseGalaxy.eu ⭐️
- UseGalaxy.fr ⭐️
- UseGalaxy.org (Main) ⭐️
- UseGalaxy.org.au ⭐️
- APOSTL
- ARGs-OAP
- Coloc-stats
- CorGAT
- CoralSNP
- CropGalaxy
- Dintor
- GASLINI
- Galaxy@AuBi
- Galaxy@Pasteur
- Genomic Hyperbrowser
- GigaGalaxy
- MISSISSIPPI
- Oqtans
- PepSimili
- PhagePromotor
- UseGalaxy.be
- UseGalaxy.cz
- UseGalaxy.no
- Viral Variant Visualizer (VVV)
Relevant Tutorials
- Assembly / Decontamination of a genome assembly
- Assembly / Making sense of a newly assembled genome
- Contributing to the Galaxy Training Material / Creating a new tutorial
- Foundations of Data Science / Data Manipulation Olympics
- Ecology / Metabarcoding/eDNA through Obitools
- Ecology / RAD-Seq Reference-based data analysis
- Epigenetics / ATAC-Seq data analysis
- Epigenetics / Infinium Human Methylation BeadChip
- Using Galaxy and Managing your Data / Workflow Reports
- Genome Annotation / Comparative gene analysis in unannotated genomes
- Genome Annotation / Essential genes detection with Transposon insertion sequencing
- Introduction to Galaxy Analyses / Data Manipulation Olympics
- Introduction to Galaxy Analyses / Galaxy Basics for everyone
- Introduction to Galaxy Analyses / From peaks to genes
- Introduction to Galaxy Analyses / How to reproduce published Galaxy analyses
- Microbiome / Clinical Metaproteomics 2: Discovery
- Microbiome / Clinical Metaproteomics 3: Verification
- Microbiome / Clinical Metaproteomics 4: Quantitation
- Microbiome / Metatranscriptomics analysis using microbiome RNA-seq data
- Microbiome / Metatranscriptomics analysis using microbiome RNA-seq data (short)
- Microbiome / Pathogen detection from (direct Nanopore) sequencing data using Galaxy - Foodborne Edition
- Proteomics / Clinical Metaproteomics 2: Discovery
- Proteomics / Clinical Metaproteomics 3: Verification
- Proteomics / Clinical Metaproteomics 4: Quantitation
- Proteomics / Label-free data analysis using MaxQuant
- Proteomics / MaxQuant and MSstats for the analysis of label-free data
- Proteomics / metaQuantome 1: Data creation
- Single Cell / GO Enrichment Analysis on Single-Cell RNA-Seq Data
- Single Cell / Matrix Exchange Format to ESet | Creating a single-cell RNA-seq reference dataset for deconvolution
- Single Cell / Single-cell ATAC-seq standard processing with SnapATAC2
- Single Cell / Generating a single cell matrix using Alevin
- Single Cell / Combining single cell datasets after pre-processing
- Single Cell / Filter, plot and explore single-cell RNA-seq data with Scanpy
- Single Cell / Inferring single cell trajectories with Monocle3
- Single Cell / Converting between common single cell data formats
- Single Cell / Converting NCBI Data to the AnnData Format
- Statistics and machine learning / A Docker-based interactive Jupyterlab powered by GPU for artificial intelligence in Galaxy
- Transcriptomics / Genome-wide alternative splicing analysis
- Transcriptomics / Pathway analysis with the MINERVA Platform
- Transcriptomics / Whole transcriptome analysis of Arabidopsis thaliana
- Transcriptomics / Network analysis with Heinz
- Transcriptomics / Reference-based RNA-Seq data analysis
- Transcriptomics / 3: RNA-seq genes to pathways
- Transcriptomics / Visualization of RNA-Seq results with heatmap2
- Variant Analysis / Calling variants in non-diploid systems
- Variant Analysis / Pox virus genome analysis from tiled-amplicon sequencing data
- Visualisation / Visualisation with Circos
- Visualisation / Ploting a Microbial Genome with Circos